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ABSTRACT
Large scale campus deployments in the past have resulted in energy
conservation measures, data validation, and software architectures.
Inspired by the success and learnings from such previous deploy-
ments, we present our work on deployment involving sensing var-
ious aspect of campus sustainability like water, electricity, solar
produce, air quality, and parking lot occupancy. Our full deploy-
ment spanned more than 171 days. We used 469 sensors, collecting
a maximum of 190 MB of data daily. We discuss the deployment
challenges and the learnings obtained from them. We address the
data collection challenges by providing best practices measures and
provide insights from the installation of wireless radio communica-
tion modules. Our deployment can act as a reconnaissance guide
for campus deployment, especially in developing countries.
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1 INTRODUCTION
Large-scale sensing deployments in both the residential and com-
mercial settings have been well-studied in the past. These have been
primarily motivated by various application scenarios, including, but,
not limited to: i) energy conservation [3, 4, 11, 13, 15–18, 20, 21], ii)
sensor data validation and management [8, 12, 19, 22], iii) software
architectures [3, 6, 9, 10], iv) occupancy estimation [7, 14].
Inspired by the success and learnings from such previous deploy-
ments, we present an extensive campus deployment (Figure 1) from
our 400 acres campus in a developing country and offer various
learnings and insights. Thework involves sensing various aspects of
campus sustainability, including i) water consumption, ii) electricity
consumption, iii) air quality, iv) solar produce, and iv) Occupancy
via Wi-Fi monitoring. These 469 sensors collect roughly 190 MB of
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data daily spread across 1211 data points.

The insights and learning presented herein can significantly reduce
the cost in terms of time and money for deployments, where sus-
tainability is the primary objective.

Dataset release: We have published our air quality and the elec-
tricity data in our project repository1. The data are stored as CSV
files. We will release the other streams of data after validation. The
same repository also contains the scripts used to collect the data.

2 DEPLOYMENT
Our efforts towards this work have involved sensing various aspects
of campus sustainability, which includes:

(1) water consumption measured via 6 flow sensors.
(2) electricity consumption measured via 54 smart meters.
(3) air quality measured using 6 sensors
(4) solar produce monitored via 399 solar panels.
(5) WiFi monitoring for 295 access points.

These 469 sensors collect 190 MB of data daily spread across 1211
data points. Till date, we have collected more than 2.5 GB of data.
The sampling frequency of water flow meter, electric meter and air
quality sensor is 1 Hz. Each solar panel has a sampling frequency of
1/1200 Hz. Our deployment started in June 2019. We have continued
monitoring air quality and WiFi till date (October 2020). We now
discuss our deployment sensing structure.

Water Flow Sensor:We installed flow sensor i) to verify the wa-
ter released by government agencies with the water received at
the campus, and ii) to check the total water usage of the campus.
To store the flow rate data in a server, we designed a circuit that
would take the 4-20mA signal from the sensor output and convert
it to a digital signal. We sampled the output every 1 second, stored
in the local storage of Raspberry Pi (RPi) and also communicated
periodically to a server via an HTTP POST request.

Electricity: The meter installation was done for two reasons: i)
to correlate the water flow rate with apparent power delivered to
the load, and ii) to understand the wear and tear of the pump as a
function of time. These four smart electric meters gave output via
RS-485 which was daisy-chained and connected to an RPi which
sent the data as a CSV file every day to a local server beside storing
it locally. The sampling frequency of these meters is 1 Hz. 50 other
meters were already installed in different buildings of the campus
prior to our deployment.

Air Quality:We measure air quality using sensors placed on our
campus and a moving bus. We are trying to understand how air
1https://github.com/sustainability-lab/DataCollection
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Figure 1: Our complete sensing architecture

quality affects human in different parts of the campus, viz. indoor
classrooms, construction sites and dining hall. We placed a sensor
inside the institute bus to quantify the change in air pollution
exposure as the bus moves from the green campus to the city. We
have put five sensors inside the campus ( 4 of them measure PM2.5
and one measure indoor CO2 levels), and another sensor inside the
bus. Figure 2 shows the CO2 sensor.

Figure 2: Circuit for monitoring indoor CO2 and Organic
Compound. It sends the data to a remote server via WiFi

OccupancyMeasurement: Our goal was to determine occupancy
in various zones in the campus using the existing infrastructure
without any additional sensor deployment or intervention on de-
vices of the residents. Occupancy measurement could lead to auto-
matic grid balancing. WiFi is an integral part of any urban campus,
and we show the application of WiFi logs to track occupancy to a
respectable approximation based on previous work [2].

Solar Produce Solar panels are an integral part of our campus. The
solar production information is processed by an inbuilt proprietary
embedded system which sends the data over the GSM/GPRS to a
remote server. Figure 3 shows the energy contribution of solar and
grid for our campus.

3 LEARNINGS
3.1 Single board computers
We have two Raspberry Pi (RPi) at our water flow monitoring site.
DC adapters power the RPi as well as a network switch to which
RPi’s ethernet is connected. We observed that one of the RPi’s IP
address was sometimes unresponsive, and at the same time, RPi
failed to write data to our database, which resulted in the loss
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Figure 3: Figure shows the contribution of solar energy to
the total power supply

of crucial data points. On-site verification revealed that the DC
adapters connected to the RPi would often get disconnected due to
physical interference from on-site staff who would use the same
power points to recharge the battery of their smartphones. We later
hardwired our adapter.

Learning 1: Ensure that a script in our remote server keeps ping-
ing the RPi at a specific interval to see if it is online. Let the local
server flag ping failures via an email to project investigators.

Different project investigators were involved in writing different
data acquisition scripts. Some scripts would retrieve data fromWiFi
logs and some would retrieve data directly from sensors via RPi.
We often used multiple such data for data analysis and found out
that the timestamp information in these data was not consistent.
Our WiFi-based occupancy scripts would store time information
as Unix Epoch, which by default is in coordinated universal time
format (UTC), other scripts running on RPi would store time infor-
mation in the local timezone. It created an inconsistency where we
had to change the time information into a uniform standard before
analysing the data.
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Learning 2: Ensure that the time format and time zone is consis-
tent in all data collection end-points.

We use RPi extensively in our project, be it water data collection,
electricity monitoring, or interfacing with communication (LORA)
modules. Hence we made sure that certain necessary practices were
followed in each of the RPi so that they become capable of research
applications. We mention such best practices here:

1. Restart a script automatically after RPi reboots: Power out-
age, or grid failures can shut down the RPi. Therefore, the script
running on RPi needs to restart after RPi reboots. Keeping the script
path in the “rc.local” file of a Linux machine (RPi) ensures that the
script starts itself after RPi reboots. It was a very significant practice
concerning our project as we observed a power shutdown due to
periodic grid maintenance every three weeks. It was also helpful in
the smooth function of RPi after it has been subjected to physical
interference like disconnection of the power adapter of the RPi
from the powerpoint.

2. Update the time on RPi with a local NTP server: RPi lacks
an onboard Real Time Clock and as such, updating the clock in RPi
becomes difficult. We worked around this problem by adding an
NTP server’s IP address (inside our campus network) to the RPi.

3. Set a static IP to the RPi: We ensured that our RPi gets the
same IP address from the Dynamic Host Control Protocol (DHCP)
pool every time it reboots. This workaround did not work if the IP
is already assigned to some other device.

4. Scripts to detect fault: It is not possible to monitor all sensor
installations for failure at all times by personnel. Hence, an alter-
nate mechanism to detect and report failures (via email/SMS) by
scripts monitoring the database for updates by all the sensors will
result in quicker fault detection.

5. Run a script after specific interval: We used RPi “cron” job
scheduler to execute certain scripts after a specific interval of time.
It is useful when we need a sensor data only at specific intervals,
say five minutes.

3.2 External deployments
During our flow sensor installation in the water supply side infras-
tructure, there was a dire need for wired connectivity. We man-
aged to get wired communication infrastructure after two weeks
of getting approval from the campus development dean. Wired
connectivity was also made available to us at the student dormi-
tory terrace. As our deployment started to increase, getting wired
connectivity in every location was challenging due to the following.

Time Constraints: A request for connectivity takes 1-2 weeks for
approval. The campus development dean needs to approve the
installation from the project or campus budget after which the
technical officers have to hire contractors for the work of digging,
conduit laying, and procurement of network switch and local area

network cables. The entire process is resource and time expensive.

Cost: The process of getting connectivity adds to the project cost. In
our case, we spent from 172 to 215 USD for each of the installations.
It is a high cost when converted to our local currency.
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Figure 4: The range of Line of Sight communication via
LORA is independent of temperature and humidity.

The first choice of wireless communication was GSM/GPRS. But
during our air pollution sensor deployment, we realised that the
GSM/GPRS connectivity on our campus was poor. Therefore, we
decided to use LORA [5], a radio frequency-based communication
system on our sensor deployment at the parking lot and also in all
future sensor deployment. LORA is cost-effective and has served
the IoT community very well [1, 5]. We conducted some indoor as
well as outdoor experiments with LORA. An indoor investigation
revealed that the Received Signal Strength (RSSI) was between -70
to -85 dBm for concrete whereas it was -20 dBm for glass. A hy-
pothesis that RSSI does not change with the rise in temperature and
humidity was proved correct in an outdoor experiment, the result
of which is in Figure 4. For this outdoor experiment, the receiver
LORA was taken to some extreme corner of our campus (Figure 5b).
We observed a successful communication with the receiver, and
the transmitter placed more than 800 meters away (Figure 5a) at
the academic block of our campus without the line of sight. The
primary objective for such experiment was to check the feasibility
of LORA in our campus environment.

Learning 3: LORA can be used for a low bandwidth (suitable for
many Internet of Things (IoT) applications) wireless communication
ranging beyond 1-kilometer without a line of sight.

3.3 Proxy sensing
OccupancyMeasurementUsingWiFi: In Section 2we explained
the motivation of measuring occupancy via WiFi logs. Address du-
plication was an important challenge in estimating occupancy from
WiFi logs. It was observed that a high proportion of campus mem-
bers used multiple devices, which includes smartphones, laptops,
and tablets. Thus, counting each device as a person would skew our
estimations. We use the information about user names wherever
available to remove duplication. Due to privacy concerns, we map
every user and MAC address of every device of the user to a unique
identification number. Whenever a client entry is detected in the
logs, we first check whether a mapping between the user name of
the client and mac address exists. If it exists, we use the existing
unique identification number to add the entry in the database. If not,
we allocate a new unique identification number and proceed with



DATA ’20, November 16–19, 2020, Virtual Event, Japan Rishiraj Adhikary, Soham Pachpande, and Nipun Batra

(a) LORA receiver path.
Image source: Google Map

(b) A LORA receiver
module

Figure 5: We obtained more than 1 KM range without a line of sight for LORA placed just above ground level.

this new mapping. We store these mappings in a secure database.

The WiFi network of our campus consists of one service set identi-
fier (SSID) and one open network. Unique user identification and
deduplication of WiFi counts is made using user credentials of SSID
authenticated Active Directory of user name and password. The
campus network relies on a single sign-on (SSO) method, which
does not give details about users. The occupancy detection algo-
rithm is shown in Figure 6a. The Wireless LAN Controller (WLC)
provides details of MAC-address and associated access point name
for every client visible to the network. The WLC also provides the
username if the client is connected to the SSO network. The access
point names are kept in the format: Area-Building-Floor-Room.
This was done to identify the location of the access point within
the campus. To verify the data given by WiFi log, we conducted
an experiment across two different areas in our campus. Area 1
is an undergraduate workspace with frequent fluctuation of stu-
dents count. Area 2 represents a lecture hall with a fixed number
of students (21 and 34 for two days in an hour, respectively) in an
interval. The ground truth compared with WiFi count is shown in
Figure 6b.
Learning 4: Since several devices per user vary a lot, taking several
connectedWiFi devices inflates the occupancy measure. Addressing
these duplication users is necessary.

Electric Meter as Proxy For Flow Meter: Flow sensors are dif-
ficult to install as we have to cut through the pipe to place them.
Therefore, it made more sense to use a smart electric meter as a
proxy for the flow meter. More apparent power delivered to the
pump would mean more the flow across the pipe connected to the
pump. We used the data from the electric meter and the flow sensor
to correlate power and flow rate. In our academic campus, two
freshwater pumps run alternatively when they pump out water
to the dormitory block, but the same pumps run together when
there is a need to transfer water from the freshwater reservoir to
recycle water reservoir. We attempted to correlate the apparent
power delivered to the load (water pump) and the instantaneous
flow rate. Figure 7 shows the plot of meter data and flows data. The
amplitude of the flow is highest when both the water pumps are
running. Also, the presence of non-zero flow occurs when either
or all of the water pumps are running. Hence, the use of electric

meters as a proxy for flow meters is justified.

Learning 5: Smart electric meters concerning each electric pump
can be used to measure the flow rate instead of flow sensors.

3.4 Air Quality
In this section, we discuss the result of air quality monitoring from a
sensor that was placed inside a kitchen mess. The monitor placed at
the kitchen reported PM2.5 value between 350 𝜇𝑔/𝑚3 to 400 𝜇𝑔/𝑚3

during cooking activity as shown in Figure 8. Even though the
cooking occurs at the same time every day, certain days are more
polluted compared to others. This can be explained by the differ-
ence in the cooked items (fried items would be more polluting), or,
incorrect or no usage of the exhaust fan. An important caveat with
monitoring cooking exposure is that our sensors can pick up hu-
midity (or steam) as particulate matter. We ruled out this possibility
in our experiments by monitoring the co-located humidity sensor.
The 24-hour mean PM2.5 value stands at 122 𝜇𝑔/𝑚3, nearly five
times the WHO mandated air quality standard. The monitoring at
the kitchen mess started on August 2019 and continues till date. We
have shared the validated air quality data for the first three months
in our project repository.
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