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.out file on Linux

.exe on Windows
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Our 

Focus



Prominent ISAs 
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An intriguing Example!
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Some Basics
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● % - indicates register names.  Example : %rbp

● $  -  indicates constants Example : $100

● Accessing register values:
○ %rbp     : Access value stored in register rbp 

○ (%rbp)   : Treat value stored in register rbp as a pointer. Access 
the value stored at address pointed by the pointer. Basically *rbp
 

○ 4(%rbp) : Access value stored at address which is 4 bytes after 
the address stored in rbp. Basically *(rbp + 4) 



An intriguing Example!
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An intriguing Example!
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For each function call, new space is created on the stack to store 
local variables and other data. This is known as a  stack frame . To 
accomplish this, you will need to write some code at the beginning 
and end of each function to create and destroy the stack frame



An intriguing Example!
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rbp is the frame pointer. In our code, it gets a snapshot of the stack 
pointer (rsp) so that when rsp is changed, local variables and 
function parameters are still accessible from a constant offset from 
rbp.



An intriguing Example!
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move immediate value 3000 to (%rbp-8)



An intriguing Example!

17

add immediate value 3 to (%rbp-8)



An intriguing Example!
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Move immediate value 100 to (%rbp-4)



An intriguing Example!
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Move (%rbp-4) to auxiliary register



An intriguing Example!
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Pop the base pointer to restore state



An intriguing Example!
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The calling convention dictates that a function’s return value is stored in 
%eax, so the above instruction sets us up to return y at the end of our 
function.



Operation Suffixes
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● b   = byte    (8 bit)
● s    = single (32-bit floating point)
● w   = word  (16 bit)
● l     = long   (32 bit integer or 64-bit floating point)
● q    = quad  (64 bit)
● t     = ten bytes (80-bit floating point)



How to get assembly code?
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Two ways:

● While Compiling
○ Use -S flag with gcc. WIll create a .s file 

containing assembly

● Using Binary
○ Use objdump. Will show the assembly in terminal.



Understanding the output
● The output will have assembly, but there is more information!
● You will see lots of Directives like: 

○ .file
○ .text
○ .global name
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Understanding the output
● The output will have assembly, but there is more information also!.
● You will see lots of Directives like: 

○ .file
○ .text
○ .global name
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x86 Register Set 
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x86 Register Set : A few more  
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● Registers starting with “r” 
○ Same as “e” registers but 64 bits wide

● EIP : The Instruction Pointer or the Program Counter



An Example with Loops!
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System Calls in Assembly
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kernel:
int 80h ; //Call kernel
ret

open:
push dword mode
push dword flags
push dword path
mov eax, 5
call kernel
add esp, byte 12
ret



System Calls in Assembly
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kernel:
int 80h ; //Call kernel
ret

open:
push dword mode
push dword flags
push dword path
mov eax, 5
call kernel
add esp, byte 12
ret

Syscall Number



A bit different!
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A simple fork program



Embedding Assembly in C
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__asm__( “instruction 1”, “instruction 2”, ...)

Example:

__asm__(
  "movl %edx, %eax\n\t"
  "addl $2, %eax\n\t"
);



Embedding Assembly in C
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Where will I use assembly?
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Where will I use assembly?
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● To write Compilers and Device Drivers

● To write viruses and for malware analysis

● Used while programming Real Time Embedded systems

● Implementing Locks for Concurrency. 
We will cover this in the third module of the course!
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