
1

A Beginners
guide to

Assembly
By Tom Glint and Rishiraj

CS301 | Fall 2020

Contributors: Varun and Shreyas

2

3

4

5

6

7

.out file on Linux

.exe on Windows

8

Our

Focus

Prominent ISAs

9

10

An intriguing Example!

11

Some Basics

12

● % - indicates register names. Example : %rbp

● $ - indicates constants Example : $100

● Accessing register values:
○ %rbp : Access value stored in register rbp

○ (%rbp) : Treat value stored in register rbp as a pointer. Access
the value stored at address pointed by the pointer. Basically *rbp

○ 4(%rbp) : Access value stored at address which is 4 bytes after
the address stored in rbp. Basically *(rbp + 4)

An intriguing Example!

13

An intriguing Example!

14

For each function call, new space is created on the stack to store
local variables and other data. This is known as a stack frame . To
accomplish this, you will need to write some code at the beginning
and end of each function to create and destroy the stack frame

An intriguing Example!

15

rbp is the frame pointer. In our code, it gets a snapshot of the stack
pointer (rsp) so that when rsp is changed, local variables and
function parameters are still accessible from a constant offset from
rbp.

An intriguing Example!

16

move immediate value 3000 to (%rbp-8)

An intriguing Example!

17

add immediate value 3 to (%rbp-8)

An intriguing Example!

18

Move immediate value 100 to (%rbp-4)

An intriguing Example!

19

Move (%rbp-4) to auxiliary register

An intriguing Example!

20

Pop the base pointer to restore state

An intriguing Example!

21

The calling convention dictates that a function’s return value is stored in
%eax, so the above instruction sets us up to return y at the end of our
function.

Operation Suffixes

22

● b = byte (8 bit)
● s = single (32-bit floating point)
● w = word (16 bit)
● l = long (32 bit integer or 64-bit floating point)
● q = quad (64 bit)
● t = ten bytes (80-bit floating point)

How to get assembly code?

23

Two ways:

● While Compiling
○ Use -S flag with gcc. WIll create a .s file

containing assembly

● Using Binary
○ Use objdump. Will show the assembly in terminal.

Understanding the output
● The output will have assembly, but there is more information!
● You will see lots of Directives like:

○ .file
○ .text
○ .global name

24

Understanding the output
● The output will have assembly, but there is more information also!.
● You will see lots of Directives like:

○ .file
○ .text
○ .global name

25

x86 Register Set

26

x86 Register Set : A few more

27

● Registers starting with “r”
○ Same as “e” registers but 64 bits wide

● EIP : The Instruction Pointer or the Program Counter

An Example with Loops!

28

System Calls in Assembly

29

kernel:
int 80h ; //Call kernel
ret

open:
push dword mode
push dword flags
push dword path
mov eax, 5
call kernel
add esp, byte 12
ret

System Calls in Assembly

30

kernel:
int 80h ; //Call kernel
ret

open:
push dword mode
push dword flags
push dword path
mov eax, 5
call kernel
add esp, byte 12
ret

Syscall Number

A bit different!

31

A simple fork program

Embedding Assembly in C

32

__asm__(“instruction 1”, “instruction 2”, ...)

Example:

__asm__(
 "movl %edx, %eax\n\t"
 "addl $2, %eax\n\t"
);

Embedding Assembly in C

33

Where will I use assembly?

34

Where will I use assembly?

35

● To write Compilers and Device Drivers

● To write viruses and for malware analysis

● Used while programming Real Time Embedded systems

● Implementing Locks for Concurrency.
We will cover this in the third module of the course!

References

36

● Chapter 11. x86 Assembly Language Programming, FreeBSD,
https://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook/x86.html

● Easy x86-64, http://ian.seyler.me/easy_x86-64/

● Introduction to the GNU/Linux assembler and linker for Intel Pentium processors,
https://www.cs.usfca.edu/~cruse/cs210s07/lesson01.ppt

● Is there a way to insert assembly code into C?,
https://stackoverflow.com/questions/61341/is-there-a-way-to-insert-assembly-code-int
o-c

https://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-handbook/x86.html
http://ian.seyler.me/easy_x86-64/
https://www.cs.usfca.edu/~cruse/cs210s07/lesson01.ppt
https://stackoverflow.com/questions/61341/is-there-a-way-to-insert-assembly-code-into-c
https://stackoverflow.com/questions/61341/is-there-a-way-to-insert-assembly-code-into-c

More Topics
● GCC
● Clang
● GCC vs Clang

○ (More: https://opensource.apple.com/source/clang/clang-23/clang/tools/clang/www/comparison.html)

● Debugger
● How to use a debugger (the practical way)

37

https://opensource.apple.com/source/clang/clang-23/clang/tools/clang/www/comparison.html

GCC
● The GNU Compiler Collection (GCC) is a compiler system produced by the GNU

Project supporting various programming languages.

● GCC is a key component of the GNU toolchain and the standard compiler for
most projects related to GNU and Linux, including the Linux kernel

38

Clang
● Clang is a compiler front end for the C, C++, Objective-C and Objective-C++

programming languages, as well as the OpenMP, OpenCL, RenderScript, CUDA
...

● It uses the LLVM compiler infrastructure as its back end and has been part of the
LLVM release cycle since LLVM 2.6

39

LLVM
● The LLVM compiler infrastructure project is a set of compiler and toolchain

technologies, which can be used to develop a front end for any programming
language and a back end for any instruction set architecture.

● LLVM is designed around a language-independent intermediate representation
(IR) that serves as a portable, high-level assembly language that can be
optimized with a variety of transformations over multiple passes.

40

Clang vs GCC [1/4]
Benefits of Using GCC

● supports languages that clang does not aim to, such as Java, Ada, FORTRAN,
etc.

● front-ends are very mature and already support C++. clang's support for C++ is
nowhere near what GCC supports.

● supports more targets than LLVM.

● popular and widely adopted.

● GCC does not require a C++ compiler to build it.

41

Clang vs GCC [1/4]
Benefits of Clang

● The Clang ASTs and design are intended to be easily understandable by anyone
who is familiar with the languages involved and who has a basic understanding of
how a compiler works.

● Clang is designed as an API from its inception, allowing it to be reused by source
analysis tools, refactoring, IDEs (etc) as well as for code generation

42

Clang vs GCC [1/4]
Benefits of Clang

● Clang aims to provide extremely clear and concise diagnostics (error and warning
messages), and includes support for expressive diagnostics.

● Clang inherits a number of features from its use of LLVM as a backend, including
support for a bytecode representation for intermediate code, pluggable
optimizers, link-time optimization support, Just-In-Time compilation, ability to link
in multiple code generators, etc.

43

Clang vs GCC [1/4]

44

Debugger
● A debugger or debugging tool is a computer program used to test and debug

other programs (the "target" program).

● The main use of a debugger is to run the target program under controlled
conditions

○ that permit the programmer to track its operations in progress

○ monitor changes in computer resources

○ most often memory areas used by the target program or the computer's operating system that may
indicate malfunctioning code.

45

GNU GDB
● The GNU Debugger (GDB) is a portable debugger that runs on many Unix-like

systems and works for many programming languages, including Ada, C, C++,
Objective-C, Free Pascal, Fortran, Go ...

46

How to use GNU GDB (the impractical basics)
● https://u.osu.edu/cstutorials/2018/09/28/how-to-debug-c-program-using-gdb-in-6-simple-steps/

● Might end up as interview questions!

47

https://u.osu.edu/cstutorials/2018/09/28/how-to-debug-c-program-using-gdb-in-6-simple-steps/

How to use GNU GDB (the practical basics)
● Use an IDE or an advanced text editor with support for debugging

● Something that works on almost all OS and is open source and user extensible is Visual Studio Code.

○ Requirements

■ The source code Eg. main.cpp

■ A compiler Eg gcc

■ A debugger like gdb

■ An editor with support for debugging like Visual Studio Code.

48

49

50

51

52

53

54

55

56

57

58

59

60

61

