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.out file on Linux

.exe on Windows
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Prominent ISAs 
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An intriguing Example!
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Some Basics
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● % - indicates register names.  Example : %rbp

● $  -  indicates constants Example : $100

● Accessing register values:
○ %rbp     : Access value stored in register rbp 

○ (%rbp)   : Treat value stored in register rbp as a pointer. Access 
the value stored at address pointed by the pointer. Basically *rbp
 

○ 4(%rbp) : Access value stored at address which is 4 bytes after 
the address stored in rbp. Basically *(rbp + 4) 



An intriguing Example!
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An intriguing Example!
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For each function call, new space is created on the stack to store 
local variables and other data. This is known as a  stack frame . To 
accomplish this, you will need to write some code at the beginning 
and end of each function to create and destroy the stack frame



An intriguing Example!
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rbp is the frame pointer. In our code, it gets a snapshot of the stack 
pointer (rsp) so that when rsp is changed, local variables and 
function parameters are still accessible from a constant offset from 
rbp.



An intriguing Example!

16

move immediate value 3000 to (%rbp-8)



An intriguing Example!
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add immediate value 3 to (%rbp-8)



An intriguing Example!
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Move immediate value 100 to (%rbp-4)



An intriguing Example!
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Move (%rbp-4) to auxiliary register



An intriguing Example!
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Pop the base pointer to restore state



An intriguing Example!
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The calling convention dictates that a function’s return value is stored in 
%eax, so the above instruction sets us up to return y at the end of our 
function.



Operation Suffixes
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● b   = byte    (8 bit)
● s    = single (32-bit floating point)
● w   = word  (16 bit)
● l     = long   (32 bit integer or 64-bit floating point)
● q    = quad  (64 bit)
● t     = ten bytes (80-bit floating point)



How to get assembly code?
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Two ways:

● While Compiling
○ Use -S flag with gcc. WIll create a .s file 

containing assembly

● Using Binary
○ Use objdump. Will show the assembly in terminal.



Understanding the output
● The output will have assembly, but there is more information!
● You will see lots of Directives like: 

○ .file
○ .text
○ .global name
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Understanding the output
● The output will have assembly, but there is more information also!.
● You will see lots of Directives like: 

○ .file
○ .text
○ .global name
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x86 Register Set 
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x86 Register Set : A few more  
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● Registers starting with “r” 
○ Same as “e” registers but 64 bits wide

● EIP : The Instruction Pointer or the Program Counter



An Example with Loops!
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System Calls in Assembly
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kernel:
int 80h ; //Call kernel
ret

open:
push dword mode
push dword flags
push dword path
mov eax, 5
call kernel
add esp, byte 12
ret



System Calls in Assembly
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kernel:
int 80h ; //Call kernel
ret

open:
push dword mode
push dword flags
push dword path
mov eax, 5
call kernel
add esp, byte 12
ret

Syscall Number



A bit different!
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A simple fork program



Embedding Assembly in C
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__asm__( “instruction 1”, “instruction 2”, ...)

Example:

__asm__(
  "movl %edx, %eax\n\t"
  "addl $2, %eax\n\t"
);



Embedding Assembly in C
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Where will I use assembly?
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Where will I use assembly?
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● To write Compilers and Device Drivers

● To write viruses and for malware analysis

● Used while programming Real Time Embedded systems

● Implementing Locks for Concurrency. 
We will cover this in the third module of the course!
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More Topics
● GCC
● Clang
● GCC vs Clang 

○ (More: https://opensource.apple.com/source/clang/clang-23/clang/tools/clang/www/comparison.html )

● Debugger
● How to use a debugger (the practical way)
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GCC
● The GNU Compiler Collection (GCC) is a compiler system produced by the GNU 

Project supporting various programming languages. 

● GCC is a key component of the GNU toolchain and the standard compiler for 
most projects related to GNU and Linux, including the Linux kernel
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Clang
● Clang is a compiler front end for the C, C++, Objective-C and Objective-C++ 

programming languages, as well as the OpenMP, OpenCL, RenderScript, CUDA 
...

● It uses the LLVM compiler infrastructure as its back end and has been part of the 
LLVM release cycle since LLVM 2.6
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LLVM
● The LLVM compiler infrastructure project is a set of compiler and toolchain 

technologies, which can be used to develop a front end for any programming 
language and a back end for any instruction set architecture. 

● LLVM is designed around a language-independent intermediate representation 
(IR) that serves as a portable, high-level assembly language that can be 
optimized with a variety of transformations over multiple passes.
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Clang vs GCC [1/4]
Benefits of Using GCC

● supports languages that clang does not aim to, such as Java, Ada, FORTRAN, 
etc.

● front-ends are very mature and already support C++. clang's support for C++ is 
nowhere near what GCC supports.

● supports more targets than LLVM.

● popular and widely adopted.

● GCC does not require a C++ compiler to build it.
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Clang vs GCC [1/4]
Benefits of Clang

● The Clang ASTs and design are intended to be easily understandable by anyone 
who is familiar with the languages involved and who has a basic understanding of 
how a compiler works.

● Clang is designed as an API from its inception, allowing it to be reused by source 
analysis tools, refactoring, IDEs (etc) as well as for code generation
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Clang vs GCC [1/4]
Benefits of Clang

● Clang aims to provide extremely clear and concise diagnostics (error and warning 
messages), and includes support for expressive diagnostics.

● Clang inherits a number of features from its use of LLVM as a backend, including 
support for a bytecode representation for intermediate code, pluggable 
optimizers, link-time optimization support, Just-In-Time compilation, ability to link 
in multiple code generators, etc.
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Clang vs GCC [1/4]
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Debugger
● A debugger or debugging tool is a computer program used to test and debug 

other programs (the "target" program). 

● The main use of a debugger is to run the target program under controlled 
conditions 

○ that permit the programmer to track its operations in progress

○ monitor changes in computer resources 

○ most often memory areas used by the target program or the computer's operating system that may 
indicate malfunctioning code.

45



GNU GDB
● The GNU Debugger (GDB) is a portable debugger that runs on many Unix-like 

systems and works for many programming languages, including Ada, C, C++, 
Objective-C, Free Pascal, Fortran, Go ... 
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How to use GNU GDB (the impractical basics)
● https://u.osu.edu/cstutorials/2018/09/28/how-to-debug-c-program-using-gdb-in-6-simple-steps/

● Might end up as interview questions!
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How to use GNU GDB (the practical basics)
● Use an IDE or an advanced text editor with support for debugging

● Something that works on almost all OS and is open source and user extensible is Visual Studio Code.

○ Requirements

■ The source code Eg. main.cpp

■ A compiler Eg gcc

■ A debugger like gdb

■ An editor with support for debugging like Visual Studio Code.
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