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Motivation

e What if you need (k* 1 MB) space from the
heap?

@ 1nt *y = malloc(1*(1024*1024))
®¢ mmap (NULL, 1052672, ...)

e 1052672 B -1024"1024 B =4096 B
e Why do we see this difference in size ?
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Free List

Used

e A good idea will be to combine multiple free space to make @
bigger free space

e \We will need a data structure to represent free space.

o A Ljst!
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Free List

Head

Free

Heap

Used
10

Free list

20

Free

— Null

30
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Free List

Request 1 Byte Heap

Free Used Free
0 10 20 30

Free list

Head — Null
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Split

After Request of 1 Byte

Free

Before Head

After Head

Used

20

Free

Addr: 21

Len: 9

30

— Null

— Null
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Free Space

Head

Free 10 Bytes

Used

Addr: 20

Len:10

— Null

15



Free Space

Head

Free 10 Bytes

Head —

Addr: 10

Len:10

Addr: 20

Len:10

— Null

Addr: 20
Len: 10 — Null
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Free Space

Addr: 10 Addr: 20

Head — Len:10 Len: 10

Can we allocate 20 Bytes of memory?

— Null
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Coalescing

Free 10 bytes

Head —

Coalesce

Head —

Addr: 10

Len:10

Addr: 20
Len: 10
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Coalescing

When do you think coalescing happens ?
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Coalescing

When do you think coalescing happens ?

Coalescing can happen each time any memory is free and then we
look for empty free spaces.
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malloc() and free() interface

int *ptr = malloc (1024*1024)
free (ptr)
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Tracking size of allocations

How does free(void *ptr) know the size of memory region that will
be back into free list?
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Tracking size of allocations

How does free(void *ptr) know the size of memory region that will be
back into free list?

ptr = malloe(20) ;

—  The header used by malloc library

ptr > =

— The 20 bytes returned to caller

An Allocated Region Plus Header



Tracking size of allocations

hptr —>

ptr

size: 20

magic: 1234567

The 20 bytes
returned to caller

Specific Contents Of The Header

typedef struct _ header t ({
inkt ‘sizey
int magic;

} header t;

A Simple Header
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Magic Number

Magic numbers are used for integrity checking
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Magic Number

Magic numbers are used for integrity checking

Size

I\/Iagic #

Previous allocation
should end here

Space returned to the caller
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Magic Number

But, instead ends here ...

Space returned to the caller
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Magic Number

assert(hptr->magic == 2939239)

Space returned to the caller

Magic number can be used for debugging. Set it to some constant
when memory is allocated. https.//danluu.com/malloc-tutorial/



https://danluu.com/malloc-tutorial/

Example

A 4KB Heap With One Free Chunk

head >

the rest of

the 4KB chunk

size:

4088

next:

0
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Example

ptr = malloc(100)

A Heap : After One Allocation

ptr —>

head —>

size: 100
magic: 1234567
size: 3980

next: 0

the 100 bytes now allocated

the free 3980 byte chunk
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Example

free(sptr)

8 bytes header {

sptr

head

size: 100

magic: 1234567

size: 100

magic: 1234567

size: 100

magic: 1234567

Y

size: 3764

next: 0

[virtual address: 16KB]

100 bytes still allocated

100 bytes still allocated
(but about to be

i freed)

] 100 bytes still allocated

The free 3764-byte chunk

Free Space With Three Chunks Allocated
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Example

free(sptr)

What is sptr ?

8 bytes header {

sptr

head

size: 100

magic: 1234567

size: 100

magic: 1234567

size: 100

magic: 1234567

Y

size: 3764

next: 0

[virtual address: 16KB]

100 bytes still allocated

100 bytes still allocated
(but about to be

i freed)

] 100 bytes still allocated

The free 3764-byte chunk

Free Space With Three Chunks Allocated
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Example

free(sptr)
8 bytes header {

size: 100

magic: 1234567

size: 100

magic: 1234567

sptr —>

What is sptr ?

16KB+8+100+8

size: 100

magic: 1234567

head

Y

size: 3764

next: 0

[virtual address: 16KB]

100 bytes still allocated

100 bytes still allocated
(but about to be

i freed)

] 100 bytes still allocated

The free 3764-byte chunk

Free Space With Three Chunks Allocated

33



Example

head

sptr

size: 100

magic: 1234567

Y

size: 100
| next: 16708
size: 100

magic: 1234567

size: 3764

next: 0

[virtual address: 16KB]

] 100 bytes still allocated

(now a free chunk of
memory)

:| 100 bytes still allocated

<
€

The free 3764-byte chunk
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Allocation Strategies

s Head—»@—»@—»@—» Null
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Allocation Strategies

Before Head_’a_’@_’@_"\'””
Best Eif Head—>¢—>@—'°—> Null
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Allocation Strategies

Before Head— Q_’ @_’6_’ Ul

Best Eil Head—»@—»@—»e—’ Null
Worst Fit Head—'@—’@ﬁ@—» Null
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Allocation Strategies

oo 10~ @ — @ — @

Best Eil Head—»@—»@—»e—» Null
Worst Fit Head—-°—>°—>@_. Null

First Fit Head—'o—’e—'e—» Null
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Allocation Strategies

Before Head_’a_’@_’@_’ Null
Best Eil Head—»@—»@—»e—» Null
Worst Fit Head—-°—>°—>@_. Null

Next Fit Head—»@—»@—»e—» Null
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Question

A 1000 Kbyte memory is managed using variable partitions but no compaction. It currently has two
partitions of sizes 200 Kbyte and 260 Kbyte respectively. The smallest allocation request in
Kbyte that could be denied is for

A. 151
B. 181
c. 231
D. 541



Binary Buddy Allocation

The allocator divides free space by two until a block that is big
enough to accommodate the request is found.
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Binary Buddy Allocation

The allocator divides free space by two until a block that is big
enough to accommodate the request is found.

64 KB
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Binary Buddy Allocation

The allocator divides free space by two until a block that is big
enough to accommodate the request is found.

64 KB

A 7 KB request



Binary Buddy Allocation

The allocator divides free space by two until a block that is big
enough to accommodate the request is found.

64 KB

32 KB 32 KB

16 KB 16 KB

8 KB



Reference and Credit

e OSTEP Chapter17/.

e Prof. Nipun Batra: Slides on free space management:
https://nipunbatra.github.io/teaching/os-fall-18 /lectures/16-s

wapping-free-memory.pdf

e Some images in the slides are courtesy of Prof. Youjip Won,
SSRC, Baskin Engineering, Santa Cruz.
https://www.ssrc.ucsc.edu/person/youjip.html
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